Working with graphics: Processing

By marloes
Published: 09/18/2007 - 13:51

Olivier Laruelle , September 2007

You might have come across the 'made with Processing’ hyperlink on the internet or heard of
Processing before. Over the past six years it has become a real phenomenon, allowing creative minds
to access the digital world. Based on a rather simple syntax and minimal interface, Processing
smoothly drives beginners into the scary world of programming.

This article is not a tutorial, but rather an attempt to give you a global idea of what the programming
environment is, looks like and why it was created. Should you decide it is the tool you need, this
article will hopefully provide enough pointers to online and offline resources to get you started on the
right track.

What is Processing?

Processing was initiated by Benjamin Fry [1] and Casey Reas [2] In Fall 2001, formerly of the
Aesthetics and Computation Group [3] at the MIT Media Lab [4] . We can see it as the follow up of
Design By Numbers [5], created by John Maeda [6], a programming environment strongly oriented at
beginners. It is an open source project free to download and free to use, with already a large
community around it.

What and who was it designed for ?

As the Processing web site mentions: “Processing is an open source programming language and
environment for people who want to program images, animation, and interactions. It is used by
students, artists, designers, researchers, and hobbyists for learning, prototyping, and production. It is
created to teach fundamentals of computer programming within a visual context and to serve as a
software sketchbook and professional production tool. Processing is developed by artists and
designers as an alternative to proprietary software tools in the same domain.” [8]

Those picking it up for the first time will find lots of very well written and archived code samples, a
large amount of information on the internet and answers to question on the Processing forum [9].
The people behind Processing [10] have made huge efforts in helping the community to grow and

1/22

http://www.digitalartistshandbook.org/?q=node/23#bio_olivier
#note_1
#note_2
#note_3
#note_4
#note_8
#note_9
#note_10

learn. For instance by illustrating the language reference with clear snippets of code. Thus helping to
grasp basic concepts little by little, i.e. image, pixel, array, mouse events, primitive shape drawing
etc.

For the more international learner you are pretty sure to find a reference you will understand as
volunteers joined forces and translated the reference into 8 different languages. Even if Processing
was aimed at beginners, its versatility and ease of development still is relevant to anyone wanting to
write creative software pieces.

What have people done with it ?

It is impossible to mention in a short article all the excellent work that has been produced in the past
years. Processing has a wide range of possible applications such as data visualisation, generative
drawing, print based design, video production, tangible installations etc... Following are some of the
most inspirational work made with Processing.

Data visualisation

“We feel fine” [11] - An exploration of human emotion, in six movements - by Jonathan Harris
and Sep Kamvar is an impressive web based example of what can be achieved. Processing was used
as a creative front end for a database that was constantly fed with comments left by various users on
the internet about how they emotionally felt. Based on particle looking interfaces, it's a delight to
browse through all the snippets that people left on the internet without thinking that one day it would
be collected by an artist, in the look of emotions.

2/22

#note_11

We Feel Fine logo

Artist Aaron Koblin, wondered what it would be like to see one day of aerial traffic over northern
America. He collected enough data and used Processing to generate a video revealing a day of aerial
traffic in America [12].

If data visualisation is an area that interests you, http://infosthetics.com/ hosts much more
examples. Note that this is not a Processing only focused web site.

Generative drawing

A popular practice within the Processing community is to draw in an algorithmic manner 2d and 3d
graphics on screen.

And so does American programmer/artist Jared Tarbell. He creates delightful “paintings” based on
pseudo naturalistic behavioural systems. For example, Bubble Chamber and other pieces can be seen
on his web site [13]. Exquisite 3d work such as Marius Watz's [14] illumination or Karsten Schmidt's
“vox scape” and its intricate 3d mesh fantasy world [15] demonstrates the level of work that has
been recently produced.

3/22

#note_12
http://infosthetics.com/
#note_13
#note_14
#note_15

Bubble chamber by Jared Tarbell

Obviously generative graphics aren't bound to stay within the memory of your computer or on your
retina imprint. They can be transposed to other media such as print - like for instance the Lovebytes
2007 generative ident [16]. 3d physical models can be made using rapid prototyping and
obviously video can be composited using processing generated imagery such as “Nike One” by
Motion Theory [17].

Illuminations 01 by Marius Watz

4722

#note_16
#note_17

Generated art forms can also become reactive: to sound like, the beautiful and very popular
Magnetosphere [18] iTunes audio visualiser created by Robert Hodgin [19], or in reverse when
forms generate sound as in Amit Pitaru's sonic wire sculptor [20] . Processing doesn't need much
extra to be used as part of a physical composition. One easy way to achieve physical interactions with
Processing is through camera assisted computer vision. Processing (windows and mac version) is able
to read video streams in a very simple fashion. Thus enabling artists to write code for detecting
presence, motion, ambient colours etc... Shadow monster [21] by Philip Worthington is a good
example. He revisited the shadow puppet theatre mechanic, augmenting it with digital shouting
monsters. It is immediate, fun, accessible and self explanatory.

Voxscape3 by Karsten Schmidt

Cameras, keyboards, mouse or sound inputs are not the only interfaces to physically interact with
computers. Sensors of all types are also available. Be aware that you will probably need to work in
parallel with other programming environments and hardware such as Arduino or Wiring. Physical
computing with Processing isn't the focus of this article but, should you be interested in it, you can
find references at the end to use as a starting point.

5/22

#note_18
#note_19
#note_20
#note_21

Object #1 by Marius Watz
The environment

Where to start ?

The Processing download page [22] is where it all starts. There you can find the version of Processing
corresponding to your operating system. Once downloaded, decompress the file anywhere on your
hard drive and open the processing application. It is now ready to run.

Before getting stuck into the code and making things work, it might be useful to take a step back
and have a look at what metaphors are used throughout the environment, but also how it basically
works.

All in all, the processing environment is a group of 3 things : the IDE (integrated development

environment) [23] the core library code, and the external libraries.

The IDE : what does it look like ?

To make it simple, the IDE is what you first see when you open Processing. Its the area where you
write and edit your code, but also contains the buttons and the menus you'll be using. The first thing
you see when starting Processing is a blank text editor. This is where to write code that will make

6/22

#note_22
#note_23

beautiful things happen.

File E2d Skeich Tools Hslp

damidda

The Processing IDE

At the top are a series of buttons. From left to right : run, stop, new, open, save, export. | think their
labels are pretty self explanatory in defining their actions. In addition more features are accessible
through contextual menus available at the very top. namely : file, edit, sketch, tools and help.

7122

File Efd Skwich Tools Halp

l__l'\."\ ﬂ

* Lrezting (Homage to A

* Crezting wariables fo
* in The progran iy The
* llpdated § Way 207

L
£

s

STZECA0N, 200G
sTroks)

olor instde = color(A04
alor piddle = colorf204
—olor nutside = colar(15

A4 Thesa sTatewsnTs ars = e,
S AP ERRanrs ety ss Thie Fresst rhes peafar

Tille Processing IDE

Sketches and sketchbook

The sketchbook metaphor Processing uses refers to a way of organising programs. A Processing
program is a sketch. The application acts like a sketchbook from where you choose or create new
sketches. It also comes with its own sketch examples. Reading and running them is a great starting
point for becoming familiar with the environment and having a first stab at the language. Just select
File > Sketchbook > examples > choose the category you're interested in > a sketch. Then press the
‘Run’ button. Repeat at will.

Tabs

Code can be split into several files to make it easier to maintain. Tabbing enables you to have all of
these files open at the same time, making development quicker than if you had to close and open
code sections each time. To do so, you will see a button on the top right. It allows you to create and
rename or hide tabs. You can then copy paste them from one project to the other if needed.

Now that you know where to write the code, lets see what the code looks like.

Introduction to the basics

The Processing syntax was made to be easy and flexible to write with while keeping intact the main

8/22

programming structural logic. This is obviously where it takes an interesting educational dimension.
And to get quick visual feedback of your code is another motivational boost to experiment more and
learn by the same occasion. Of course it takes a little effort to get into it, but the environment will
give you enough freedom to smoothly sail along without pulling your hair every five minutes.

To give you an overview of what Processing code is like, we will go through some of the basic
concepts of the language.

Setup and draw

First of all when you start writing your code you need to mention what will be the window display
size. So how do we set up our favourite playground boundaries? By using the function setup() ! [24

void setup(){
size(800, 600);

background(0);

If you run the above code it will create a window 800 pixels wide and 600 pixels height with a black
background [25]. Processing always calls setup() first and looks at what it contains. It is usually used
to invoke global commands relative to the sketch. Like the size, the frame rate, the rendering mode
etc...

But drawing an empty window isn't really that exciting right? Where is the action? We want more than
creating a window... we want to draw things into that window. How do we do that? Using draw() !

[26]

Add this to your sketch after previous code :

void draw(){

9/22

#note_24
#note_25
#note_26

fill(255);

rect(350, 250, 100, 100);

And if you run this again you will see a white rectangle drawn in the middle of the screen on a black
background. This is how to draw things. Unlike software like Flash or Director, Processing has no
timeline, instead draw is constantly called at a regular time interval. So to animate things, you will
have to calculate coordinates of your graphic elements from one frame to the other.

To place and draw graphics within the window, Processing uses the Cartesian coordinate system
[27] . Like Flash the widow display has its origin at the top left corner. The 'x' being the horizontal
axis and 'y' the vertical. So, the further right in your window, the higher the 'x' value, and the lower
you are in your window, the higher the 'y' value. This obviously differs from the normal mathematical
system with the origin placed at the bottom left of any 'graph’.

So as long as you set things in setup() and draw things in draw() you shouldn't have any problem.
Check the reference [28] to learn how to use the syntax, and then check the extended references
[29] for more exciting possibilities. Many shapes can be drawn, an infinite number of colour
combinations can be used and plenty of animations awaiting to be created.

Note : Processing doesn't limit you to writing procedural code [56] . If you have Object oriented
programming knowledge you can apply it too [30].

Inputs and Outputs

Common Inputs

Processing allows easy access to the common inputs a computer provides. You can capture the mouse
coordinate, listen to what key has been pressed, or get the current system time.

File input

10/ 22

#note_27
#note_28
#note_29
#note_56
#note_30

You are obviously not limited to drawing primitive shapes in Processing, you can also import all sorts
graphics to play with. Processing will look into the data directory of your sketch for anything you want
to import. Most bitmap image formats can be read but also SVG vector graphics. You can read video
connecting through camera feeds or Quicktime files. It is very easy to read, write and analyse sound
data using external libraries such as Sonia, minim or Ess. You can naturally also open and read the
content of text or xml files [38] . Finally Processing has its own way of handling fonts, you just need
to convert any true type fonts to bitmap versions font before you can use them in your sketch. This is
doable manually (Tools>Create Font...) or dynamically using createFont().

Connectivity

The Network library provides the possibility of establishing connections to a network [28]. You can
handily use the network connections and OSC to communicate with other applications. Another way to
communicate with your program is by listening to the serial port activity (or i/o), perfect solution for
connecting to physical interfaces like Arduino or wiring [39]!

Outputs

You can export the result of your computation to many different file formats. The more obvious being
exporting an image of what is drawn in the display window using saveFrame() you can also export raw
Quicktime for anything in motion (note : not on linux). For printing purposes it is possible to export as
.pdf , Svg (proSVG library) or Postscript (SimplePostScript), Collada for 3D or .wav for sound.

Export

With the processing beta version came the possibility to export applications (File > export)
application. This will create 3 different types of executable file, one for each operating system, Osx,
Windows, Linux. You won't need processing to run those files, they'll be standalone. It is also
possible to export an applet to run in a web browser, or finally the present mode (Sketch > Present)
straight from the IDE.

The Present mode is particularly interesting when you want to cover the entire screen with your
application. It won't change your screen resolution but the area not covered by your sketch will be
filled with black.

Renderers

11/22

#note_38
#note_28
#note_39

Another thing that might be worth mentioning at this stage is the different renderers you can use to
display your sketches. You can do this by defining an extra variable in the size() command. Available
renderers are :

By default, if you don't mention anything Processing will use JAVA2D, good for drawing and web but
can be a bit slow. Unleash P3D (JAVA3D) (size(800, 600, P3D))and you can exploit its great
functionality for drawing in 3d and making things portable onto the web. Faster? Defining OPENGL
uses jogl a java bindings for OpenGL API. Very Fast, depending on your graphic card, but not easily
portable to the web. OpenGL is almost another topic in itself as you can invoke OpenGL commands
from within Processing, hence accessing another programming language. There are numerous posts
on the Processing forum on how to hack around Opengl in Processing. Finally you can use PDF to
export what the program draws to a pdf file.

Note : More information can be found on the size() reference page.

Now that we have been around the most important functional aspect of the IDE and have an idea of
what Processing syntax looks like. The last principal aspect we need to understand is what Processing
is doing when we run our beautiful code.

Core

Processing is written in Java and although it has its own syntax, everything written in Processing is
converted back into “pure” Java before being compiled (run). “Distinctions between Processing and
Java are the Processing graphics library and a simplified programming style that doesn't require users
to understand more advanced concepts like classes, objects, or animation and double-buffering (while
still making them accessible for advanced users). Such technical details must be specifically
programmed in Java, but are integrated into Processing, making programs shorter and easier to

read.” [31]

Processing is autonomous. It is shipped with jikes [32], an open source Java compiler. So there is no
need to install Java to make it work. Nevertheless you will need Java Runtime Environment installed if
you want to view your applets running in your very own browser [33].

One advantage of Java is its Cross platform compatibility. It will run on most operating systems. On
the other hand Java can be slow compared to some programming languages such as C or C++. But in
the context of a teaching software it makes sense to choose ease of use against speed.

12/22

#note_31
#note_32
#note_33

Being based on Java also means you have access to the numerous great libraries the language offers.
If you can't do what you want using Processing syntax there is probably the answer in the wide world

of Java. If you wanted, you could even write Java code into Processing, but that may be the time for

you to change IDE (to something like Eclipse [34]) and then use the Processing core as a library.

As it is an open source software development, you can have a look, download and play with the full
Processing core code from the development site [35]. On the same web site, you will find lots of
useful information on how to help develop Processing.

Libraries

Libraries are add-on code to the Processing core that allow you to extend the capabilities of the
language. Some of them are bundled with Processing and so are available to use from when you
download the main application. The other are user contributed libraries listed on the Processing site
and maintained by their creator. For instance the popular Sonia library by Amit Pitaru allows you to
access advanced audio capabilities like doing real time frequency analysis (FFT) and write wav from
samples etc. MaxLink [36] Enables communication between Processing and Max/MSP and to name
another one JMyron [37] by Josh Nimoy allows you to do advanced motion tracking using a web
cam. One's answer to a technical need can then be shared with the rest of the community, resulting in
a constantly growing list of libraries [38].

Processing sister projects.

There are 2 obvious ways of getting Processing to communicate with other devices than your
computer. Writing programs for your mobile, or exploring the world of physical computing using
Arduino or Wiring.

Mobiles: You can port your Processing applications to Java enabled mobile devices using Processing
Mobile. There is a separated web site devoted to it [40].

Physical computing :

Wiring : Borrows The Processing IDE for programming i/o boards [41] .

Arduino : As Wiring, Arduino shares the Processing programming environment so you won't have to
learn another interface, “only” the code will be different [42].

13/22

#note_34
#note_35
#note_36
#note_37
#note_38
#note_40
#note_41
#note_42

Resources

Online

The syntax page [28] of the Processing web site is the most useful and obvious online help. It is
really the starting point. If you encounter difficulties while developing beyond the syntax, other users
can help you on the forum. To get a better chance of getting an answer, make sure to post in the
right category (syntax, bug, openGl etc..). make sure to search the forum first see if anyone one
encountered and resolved a similar issue. Be specific on what your problem is by posting code for
instance, this will help you get a quick answer to your problem. There is no mailing list on the user
end, the forum is the heart of Processing user contributed knowledge - it is a beginner friendly place
to ask questions so don't be shy.

For clever code tricks look at processinghacks [45] and stellar snippet palace[46]. Make sure you
also go through the excellent "the nature of code” [47] class written by Daniel Shiffman to learn
about “programming strategies and techniques behind computer simulations of natural systems”.

To keep in touch with what users individually think and produce, check processingblogs [48] - an
aggregation of Processing related blog posts. Flick through the flickr [49] pool, and click around the
meta sketchbook buildwithprocessing [50] for examples of interesting applets. Users also
appropriately tag their videos so it's easy to find the ones related to Processing on YouTube [51] or
Vimeo [52].

Offline

If you think Processing is for you and you will start creating things with it, then it's probably a good
idea to purchase the recently published “Processing: A Programming Handbook” for Visual Designers
and Artists [53], written by the very creators of processing Casey Reas and Ben Fry. At this date
another book related to learning programming using Processing has been written: Processing:
Creative Coding and Computational Art [53] By Ira Greenberg. | personally haven't yet been through
those publications. I'll let you browse through the online samples to make up your own mind on what
suits your needs best.

Limitations

The choice of the programming environment is a fundamental factor when starting working on a
project. Hopefully this article will give you elements to answer this question. Nevertheless, Processing
can be limited in some domains. First of all, Java isn't the fastest language around so if you need to
process heavy computational tasks it will simply not deliver good results.

14 /22

#note_28
#note_45
#note_47
#note_48
#note_49
#note_50
#note_51
#note_52
#note_53
#note_53

For instance, | would not recommend it to do real time sound synthesis. Not that it is impossible, but |
would look at specifically designed environments that will provide you with more tools and speed to
do so. Real time video manipulation is another treatment that demands lots of resources and if you
wanted to access a large bank of clips or run heavy pixel manipulation on a video stream or between
streams, probably best looking at some other means.

On a practical side, the IDE is very minimal and can become restrictive when writing lengthy code. It
was made for sketches, so if you think about it like painting a fresco, then you might want to look at
changing brushes. Eclipse can be used to write Processing code and will give you more flexibility when
developing. A quick search on the forum will tell you how.

To end this chapter, something not only technically driven, but related to the whole recent Processing
phenomenon and the future of the platform. Karsten Schmidt, a well respected programmer and
Processing user, pointed out very pertinent comments about the dangers of having popular, easy to
access programming resources within the creative world. The post he did on his blog [54] provoked
substantial reactions within the community [55] and | would only encourage everyone serious
about creating things with Processing to read through it. A post read 5000+ times can't be a bad
post.

Thank you for reading this article. | sincerely hope it will help you in your artistic practice, and should
you decide to use Processing, | can't wait to see what you will come up with.

Happy coding!

Notes

[1] Ben Fry : http://benfry.com/

[2] Casey Reas : http://reas.com/

[3] Aesthetic + computation group : http://acg.media.mit.edu/

15/22

#note_54
#note_55
http://benfry.com/
http://reas.com/
http://acg.media.mit.edu/

[4] Wikipedia page about the MIT media lab : http://en.wikipedia.org/wiki/MIT_Media_Lab

[5] Design by Number (DBN) web site : http://dbn.media.mit.edu/

[6] John Maeda : http://plw.media.mit.edu/people/maeda/

[7] Processing Beta release announcement by Casey Reas
http://processing.org/discourse/yabb beta/YaBB.cqgi?board=Collaboration;a...

[8] Processing official web site : http://processing.org/

[9] Processing forum : http://processing.org/discourse/yabb_beta/YaBB.cqi

[10] people behind processing : http://processing.org/people.html

[11] We feel fine, artistic approach to data visualisation onilne : http://www.wefeelfine.org

[12] Flight pattern by Aaron Koblin http://users.design.ucla.edu/~akoblin/work/faa/

16 /22

http://en.wikipedia.org/wiki/MIT_Media_Lab
http://dbn.media.mit.edu/
http://plw.media.mit.edu/people/maeda/
http://processing.org/discourse/yabb_beta/YaBB.cgi?board=Collaboration;action=display;num=1113806942
http://processing.org/
http://processing.org/discourse/yabb_beta/YaBB.cgi
http://processing.org/people.html
http://www.wefeelfine.org
http://users.design.ucla.edu/~akoblin/work/faa/

[13] Complexification.net, Jared Tarbell's online gallery : http://complexification.net/

[14] Evolution zone, marius Watz's portfolio http://evolutionzone.com/

[15] Karsten Schmidt's (aka toxi) blog : http://www.toxi.co.uk/blog/

[16] Lovebyte generative identiy by Karsten Shmidt and universal everything

http://www.toxi.co.uk/blog/2007 04 01 archive.htm

[17] Nike one video by motion theory : http://www.motiontheory.com:16080/nikeqgolf/

[18] Magnetosphere iTune audio visualiser http://software.barbariangroup.com/magnetosphere/

[19] Flight 404, Robert Hodgin blog http://www.flight404.com/blog/

[20] Sonic wire Sculptor by Amit Pitaru : http://www.pitaru.com/sonicWireSculptor/framed/

[21] Philip Worthington's Shadow Monster project :
http://www.worthersoriginal.com/viki/#page=shadowmonsters

17 /22

http://complexification.net/
http://evolutionzone.com/
http://www.toxi.co.uk/blog/
http://www.toxi.co.uk/blog/2007_04_01_archive.htm
http://www.motiontheory.com:16080/nikegolf/
http://software.barbariangroup.com/magnetosphere/
http://www.flight404.com/blog/
http://www.pitaru.com/sonicWireSculptor/framed/
http://www.worthersoriginal.com/viki/#page=shadowmonsters

[22] Processing download page http://processing.org/downlad

[23] IDE Wikipedia page : http://en.wikipedia.org/wiki/Integrated _development_environment

[24] setup reference page : http://processing.org/reference/setup_.html

[25] background reference page : http://processing.org/reference/background_.html

[26] draw reference page : http://processing.org/reference/draw_.html

[27] Cartesian coordinate system Wikipedia page :
http://en.wikipedia.org/wiki/Cartesian_coordinate_system

[28] processing online reference : http://processing.org/reference/index.html

[29] processing online extended reference : http://processing.org/reference/index_ext.html

[30] class reference page : http://processing.org/reference/class.html

18 /22

http://processing.org/downlad
http://en.wikipedia.org/wiki/Integrated_development_environment
http://processing.org/reference/setup_.html
http://processing.org/reference/background_.html
http://processing.org/reference/draw_.html
http://en.wikipedia.org/wiki/Cartesian_coordinate_system
http://processing.org/reference/index.html
http://processing.org/reference/index_ext.html
http://processing.org/reference/class.html

[31] Java comparison page : http://processing.org/reference/compare/java.html

[32] jikes web site

[33] Java.com

[34] Eclipse development platform : http://www.eclipse.org/

[35] Processing development web site : http://dev.processing.org/

[36] MaxLink library : http://iklabs.net/maxlink/

[37] JMyron library : http://webcamxtra.sourceforge.net/

[38] Processing libraries page http://processing.org/reference/libraries/index.html

[39] Hardware page (Arduino and Wiring) : http://hardware.processing.org/

[40] Processing mobile web site : http://mobile.processing.org/

19/22

http://processing.org/reference/compare/java.html
http://www.eclipse.org/
http://dev.processing.org/
http://jklabs.net/maxlink/
http://webcamxtra.sourceforge.net/
http://processing.org/reference/libraries/index.html
http://hardware.processing.org/
http://mobile.processing.org/

[41] Wiring : http://www.wiring.org.co/

[42] Arduino : http://www.arduino.cc/

[45] Processing hacks : http://www.processinghacks.com/

[46] Stellar snippet palace : http://snippet.seltar.org/

[47] Daniel Shiffman nature of code http://www.shiffman.net/teaching/nature/

[48] Processingblogs : http://www.processingblogs.org/

[49] processing flickr pool : http://www.flickr.com/groups/processing/

[50] build with processing : http://builtwithprocessing.org/

[51] youtube processing group : http://youtube.com/group/processing

[52] Vimeo video tagged with processing : http://www.vimeo.com/tag:processing

20/ 22

http://www.wiring.org.co/
http://www.arduino.cc/
http://www.processinghacks.com/
http://snippet.seltar.org/
http://www.shiffman.net/teaching/nature/
http://www.processingblogs.org/
http://www.flickr.com/groups/processing/
http://builtwithprocessing.org/
http://youtube.com/group/processing
http://www.vimeo.com/tag:processing

[53] Processing related books : http://processing.org/learning/books/

[54] Toxi's rant : http://www.toxi.co.uk/blog/2006/01/note-this-article-is-using.htm

[55] Answer to toxi's comments:
http://processing.org/discourse/yabb beta/YaBB.cgi?board=Collaboration;a...

[56] Procedural programming Wikipedia page : http://en.wikipedia.org/wiki/Procedural_code

Images

[1] Jared Tarbell

Bubble chamber CC Attribution 2.0 Generic (http://creativecommons.org/licenses/by/2.0/deed.en GB
):

http://flickr.com/photos/generated/15448/

[2] Marius Watz
Object #1 (Attribution-Non-Commercial-Share Alike 2.0 Generic)

http://creativecommons.org/licenses/by-nc-sa/2.0/deed.en GB

http://flickr.com/photos/watz/336839822/

[3] Av 06 - Sage Gateshead - llluminations 01 (Attribution-Non-Commercial-Share Alike 2.0 Generic)

http://creativecommons.org/licenses/by-nc-sa/2.0/deed.en GB

21/22

http://processing.org/learning/books/
http://www.toxi.co.uk/blog/2006/01/note-this-article-is-using.htm
http://processing.org/discourse/yabb_beta/YaBB.cgi?board=Collaboration;action=display;num=1137655161
http://en.wikipedia.org/wiki/Procedural_code
http://creativecommons.org/licenses/by/2.0/deed.en_GB
http://flickr.com/photos/generated/15448/
http://creativecommons.org/licenses/by-nc-sa/2.0/deed.en_GB
http://flickr.com/photos/watz/336839822/
http://creativecommons.org/licenses/by-nc-sa/2.0/deed.en_GB

http://flickr.com/photos/watz/108738341/

[4] Karsten Schmidt
voxscape3 (Attribution-Non-Commercial-No Derivative Works 2.0 Generic)

http://creativecommons.org/licenses/by-nc-nd/2.0/deed.en GB

http://flickr.com/photos/toxi/157372173/in/set-72157594145899116/

[5] We Feel Fine logo, image courtesy of Sep Kamvar

http://www.wefeelfine.org/

We Feel Fine copyright, All right reserved

[6] Screenshots of the IDE, images by the author

< Blender: Working with 3D up Working with sound »

22 /22

http://flickr.com/photos/watz/108738341/
http://creativecommons.org/licenses/by-nc-nd/2.0/deed.en_GB
http://flickr.com/photos/toxi/157372173/in/set-72157594145899116/
http://www.wefeelfine.org/
/?q=node/36
/?q=graphics
/?q=sound

