
Software art

By admin
Published: 10/04/2007 - 08:31

Olga Goriunova , September 2007

The term ‘software art’ acquired a status of an umbrella term for a set of practices approaching
software as a cultural construct. Questioning software culturally means not taking for granted, but
focusing on, recognising and problematising its distinct aesthetics, poetics and politics captured and
performed in its production, dissemination, usage and presence, contexts which software defines and
is defined by, histories and cultures built around it, roles it plays and its economies, and various other
dimensions. Software, deprived of its alleged ‘transparency’, turns out to be a powerful mechanism, a
multifaceted mediator structuring human experience, perception, communication, work and leisure, a
layer occupying central positions in the production of digital cultures, politics and economies.

gun.exe by Anonymous

The history of framing ‘software art’ allowed for inclusion of a wide variety of approaches, whether

 1 / 25

http://www.digitalartistshandbook.org/?q=node/23#bio_olga

focused on code and its poetics, or on the execution of code and art generated ‘automatically’, or on
the visual-political aesthetics of interfaces and ‘languages’ of software, or on the traditions of
‘folklore’ programmers’ and users’ cultures creation, use and misuse of software, or on software as a
‘tool’ of social and political critique and as an artistic medium, even perceived within the most
traditionalist frameworks, and many more. ‘Genres’ of software art may include text editors that
challenge the culture of writing built into word processing software and playfully engage with the new
roles of words, all indexed in the depths of search engine databases; browsers, critically engaging
with the genre of browser software as a culturally biased construct that wants to both trigger and
control users’ perceptions, ideas and desires; games, rebelling against chauvinist, capitalist, military
logic encoded into commercial games and questioning the seeming “normality” of game worlds;
low-tech projects based on creative usage of limited, obsolete algorithms; bots as pieces of software
that, like normal bots, crawl the web in gathering information or perform other tasks, but, unlike
them, reveal hidden links, perform imaginative roles and work against normative functions; artistic
tools working towards providing new software models for artistic expression and rich experience,
sometimes made in spite of mainstream interface models; clever hacks, deconstructions or misuse of
software; projects providing environments for social interactions, including non-normative, or looking
at the development of software as a social praxis, and many others, complex enough or too elegantly
simple to be locked into the framework of a single ‘genre’ [1] .

Portrait of the President (putin.exe) by Vladislav Tselisshev

Software art as a term appeared around the late 1990's from net art discourse [2] . Interest in the
code of Internet web-pages and the functioning of networks, characteristic of net art, developed
towards problematising software running Internet servers and personal computers, towards different
kinds of software behind any image, process, instrument or channel [3] .

 2 / 25

#note_1
#note_2
#note_3

Since software can be defined as a set of formal instructions that can be executed by a computer, or
as code and its execution at the same time [4] , a history of precursors of software art, including
permutational poetry, Dada and Fluxus experiments with formal variations and, especially,
conceptual art based on execution of instructions, can be retrospectively built[5] .

Wasted time by Anonymous

Software art’s relation to net art and art history does not exhaust its ‘roots’ and scope of approaches
in a historical context. One of the forces of software art lies in its capitalization on the grass-roots
traditions of programmers’ and users’ cultures of software creation and usage, some ‘digital folklore’,
and in its references to more specific traditions, such as demo (a multimedia presentation computed
in real time and used by programmers to compete on the level of the best programming graphic and
music skills, originating from the hackers’ scene of the early 1980's, when short demos were added to
the opening visuals of cracked video games) and some other powerful and old traditions, such as
generative art, rooted in both artistic and programmers’ cultures.

 3 / 25

#note_4
#note_5

Suicide Letter Wizard for Microsoft Word by Olga Goriunova

Since the 1950's (when the first high-level programming languages were created and when the first
mainframe computers were bought by a few large universities) smart and funny uses of technology,
entertaining games, code poetry contests, fake viruses and other forms have been building up
cultures of ‘digital folklore’: ‘… there is the field of gimmicks, nerdy tricks and playing with the given
formulas, the eyes which follow the mouse pointer. … there is the useless software production,
insider gags, Easter eggs, hidden features based on mathematical jokes, the Escher - trompe-l'oeil
effects of playing with perception…’ [6] Digital folklore exists in relation to a group of programmers,
designers or informed users worldwide; it embeds, and is embedded within, codes of behaviour, of
relations to employers and customers, to users, colleagues and oneself; it is correlated with the most
important institutes, repeated actions, situations, models and is often based on non-formal means of
production, dissemination and consumption. The variety of software cultures rooted in ‘geek’
practices, traditions of ‘bedroom’ cultures, cultures of software production and patterns of usage and
adjustment build up sources of inheritance and inspiration for software art along with activist and
artist engagements with software, each with histories of their own.

Software art benefited from currents of interest of more academic nature in the cultural and
socio-political contexts of technology and, precisely, software [7] . The current form and ‘state’ of
software art is due to a particular history of institutional development [8] . There also could be named
a number of projects, practices and discourses conceptually and practically close to what is termed
‘software art’, which chose or happened to distance themselves from the usage of this term and from

 4 / 25

#note_6
#note_7
#note_8

its institutional incarnations, for their potentially ‘limiting’ character in linking it to specific art fields,
histories, and agents[9] . Moreover, departing from the term ‘software art’ might allow for starting up
new stories and making visible some undervalued and overlooked practices and approaches.

Notes

[1] The above-mentioned ‘genres’ are taken from Runme.org software art repository’s ‘taxonomy’
that includes more categories than listed and presents one of the attempts to be open to a wide
variety of approaches by building contradictory and, to a degree, self-evolving classificatory ‘map’ of
software art.

 [2] One of the first written mentionings of the term ‘software art’ can be found in Introduction to
net.art (1994-1999) by Alexei Shulgin and Natalie Bookchin; http://easylife.org/netart/

 [3] Deconstructions of HTML by Jodi, for instance, turned into the modification of old computer video
game Wolfenstein 3D - SOD (1999) and other games. Projects such as alternative web browsers that
were considered part of the net art movement started to be written back in 1997 with Web Stalker by
I/O/D, continued by Web Shredder by Mark Napier in 1998, and Netomat by Maciej Wisniewski in
1999, and often got labeled as ‘online software art’.

 [4] Cramer, Florian. Concept, Notation, Software, Art. 2002;
http://userpage.fu-berlin.de/~cantsin/homepage/writings/software_art/con...

 [5] Ibid. See also: Cramer, Florian and Gabriel, Ulrike. Software Art. 2001;
http://www.netzliteratur.net/cramer/software_art_-_transmediale.html and Albert, Saul.
Artware.1999. Mute, Issue 14, London. http://twenteenthcentury.com/saul/artware.htm

 [6] Schultz, Pit. Interviewed by Alexei Shulgin. Computer Age is Coming into Age. 2003.
http://www.m-cult.org/read_me/text/pit_interview.htm

 [7] It is difficult and lengthy to enumerate all the interesting publications on the issue. An excellent
example is Software Studies: a Lexicon. Ed. by Matthew Fuller, 2008, Cambridge, The MIT Press.

[8] Transmediale, Berlin-based media art festival introduced an ‘artistic software’ category in 2001
(ran until 2004), Readme software art festivals (2002-2005) and Runme.org software art repository
(running from 2003) added on to the construction of the current ‘layout’ of ‘software art’ if it is taken
as a scene defined institutionally. The list of events is continued by exhibitions, such as I love you

 5 / 25

#note_9
http://easylife.org/netart/
http://userpage.fu-berlin.de/~cantsin/homepage/writings/software_art/concept_notations//concepts_notations_software_art.html
http://www.netzliteratur.net/cramer/software_art_-_transmediale.html
http://twenteenthcentury.com/saul/artware.htm
http://www.m-cult.org/read_me/text/pit_interview.htm

[rev.eng] (Museum of Applied Arts Frankfurt, 2002; (http://www.digitalcraft.org/iloveyou/), Generator
(Liverpool Biennale, 2002; http://www.generative.net/generator/), CODeDOC (Whitney Museum, NY,
2002; http://artport.whitney.org/commissions/codedoc/index.shtml), and a number of symposiums,
conferences and discussions.

 [9] Matthew Fuller, for instance, suggested ‘critical software’, ‘social software’ and ‘speculative
software’ as generic titles for practices software art attempted to draw in; see: Fuller, Matthew.
Behind the Blip, Software as Culture. (some routes into “software criticism”, more ways out). 2002.
In: Fuller, Matthew. Behind the Blip. Essays on the Culture of Software. 2003, New-York,
Autonomedia.

Images

[1] gun.exe by anonymous

[2] Portrait of the President (putin.exe) by Vladislav Tselisshev, image courtesy of the author

[3] Wasted time by anonymous

[4] Suicide Letter Wizard for Microsoft Word by Olga Goriunova, image courtesy of the author

" >

span-->

 - $(echo echo) echo $(echo): Command Line Poetics
 - Game art: theory, communities, resources

‹ Video editing with open source tools up $(echo echo) echo $(echo): Command Line Poetics ›

 6 / 25

http://www.digitalcraft.org/iloveyou/
http://www.generative.net/generator/
http://artport.whitney.org/commissions/codedoc/index.shtml
/?q=node/13
/?q=node/11
/?q=node/35
/?q=node/17
/?q=node/13

$(echo echo) echo $(echo): Command Line Poetics

By marloes
Published: 09/18/2007 - 13:39

Florian Cramer, 2003 / 2007

Design

Most arguments in favor of command line versus graphical user interface (GUI) computing are flawed
by system administrator Platonism. A command like "cp test.txt /mnt/disk" is, however, not a single
bit closer to a hypothetic "truth" of the machine than dragging an icon of the file.txt with a mouse
pointer to the drive symbol of a mounted disk. Even if it were closer to the "truth", what would be
gained from it?

The command line is, by itself, just as much an user interface abstracted from the operating system
kernel as the GUI. While the "desktop" look and feel of the GUI emulates real life objects of an
analog office environment, the Unix, BSD, Linux/GNU and Mac OS X command line emulates teletype
machines that served as the user terminals to the first Unix computers in the early 1970s. This
legacy lives on in the terminology of the "virtual terminal" and the device file /dev/tty (for
"teletype") on Unix-compatible operating systems. Both graphical and command line computing are
therefore media; mediating layers in the cybernetic feedback loop between humans and machines,
and proofs of McLuhan's truism that the contents of a new medium is always an old medium.

Both user interfaces were designed with different objectives: In the case of the TTY command line,
minimization of typing effort and paper waste, in the case of the GUI, use of - ideally -
self-explanatory analogies. Minimization of typing and paper waste meant to avoid redundancy,
keeping command syntax and feedback as terse and efficient as possible. This is why "cp" is not
spelled "copy", "/usr/bin/" not "/Unix Special Resources/Binaries", why the successful completion of
the copy command is answered with just a blank line, and why the command can be repeated just
by pressing the arrow up and return keys, or retyping "/mnt/disk" can be avoided by just typing "!$".

The GUI conversely reinvents the paradigm of universal pictorial sign languages, first envisioned in
Renaissance educational utopias from Tommaso Campanella's City of the Sun to Jan Amos

 7 / 25

http://www.digitalartistshandbook.org/?q=node/23#bio_florian

Comenius illustrated school book "Orbis Pictus". Their design goals were similar: "usability",
self-explanatory operation across different human languages and cultures, if necessary at the
expense of complexity or efficiency. In the file copy operation, the action of dragging is, strictly
seen, redundant. Signifying nothing more than the transfer from a to b, it accomplishes exactly the
same as the space in between the words - or, in technical terms: arguments - "test.txt" and
"/mnt/disk", but requiring a much more complicated tactile operation than pushing the space key.
This complication is intended as the operation simulates the familiar operation of dragging a real
life object to another place. But still, the analogy is not fully intuitive: in real life, dragging an object
 doesn't copy it. And with the evolution of GUIs from Xerox Parc via the first Macintosh to more
contemporary paradigms of task bars, desktop switchers, browser integration, one can no longer
put computer-illiterate people in front of a GUI and tell them to think of it as a real-life desk. Never
mind the accuracy of such analogies, GUI usage is as much a constructed and trained cultural
technique as is typing commands.

Consequentely, platonic truth categories cannot be avoided altogether. While the command line
interface is a simulation, too - namely that of a telegraphic conversation - its alphanumeric
expressions translate more smoothly into the computer's numeric operation, and vice versa. Written
language can be more easily used to use computers for what they were constructed for, to
automate formal tasks: the operation "cp *.txt /mnt/disk" which copies not only one, but all text files
from the source directory to a mounted disk can only be replicated in a GUI by manually finding,
selecting and copying all text files, or by using a search or scripting function as a bolted-on tool. The
extension of the commmand to"for file in *; do cp $file $file.bak; done" cannot be replicated in a
GUI unless this function has been hard-coded into it before. On the command line, "usage"
seamlessly extends into "programming".

In a larger perspective, this means that GUI applications typically are direct simulations of an analog
tool: word processing emulates typewriters, Photoshop a dark room, DTP software a lay-out table,
video editors a video studio etc. The software remains hard-wired to a traditional work flow. The
equivalent command line tools - for example: sed, grep, awk, sort, wc for word processing,
ImageMagick for image manipulation, groff, TeX or XML for typesetting, ffmpeg or MLT for video
processing - rewire the traditional work process much like "cp *.txt" rewires the concept of copying a
document. The designer Michael Murtaugh for example employs command line tools to
automatically extract images from a collection of video files in order to generate galleries or
composites, a concept that simply exceeds the paradigm of a graphical video editor with its
predefined concept of what video editing is.

The implications of this reach much farther than it might first seem. The command line user interface
provides functions, not applications; methods, not solutions, or: nothing but a bunch of plug-ins to
be promiscuously plugged into each other. The application can be built, and the solution invented,
by users themselves. It is not a shrink-wrapped, or - borrowing from Roland Barthes - a "readerly",
but a "writerly" interface. According to Barthes' distinction of realist versus experimental literature,
the readerly text presents itself as linear and smoothly composed, "like a cupboard where meanings
are shelved, stacked, safeguarded". 1 Reflecting in contrast the "plurality of entrances, the opening

 8 / 25

file:///home/shiro/txt/projects/folly/DAH/articles/art-florian/command_line_poetics.html#tthFtNtAAB

of networks, the infinity of languages", 2 the writerly text aims to make "make the reader no longer
a consumer, but a producer of the text". 3 In addition to Umberto Eco's characterization of the
command line as iconoclastically "protestant" and the GUI as idolatrously "catholic", the GUI might
be called the Tolstoj or Toni Morrison, the command line the Gertrude Stein, Finnegans Wake or
L.A.N.G.U.A.G.E poetry of computer user interfaces; alternatively, a Lego paradigm of a self-defined
versus the Playmobil paradigm of the ready-made toy.

Ironically enough, the Lego paradigm had been Alan Kay's original design objective for the graphical
user interface at Xerox PARC in the 1970s. Based on the programming language Smalltalk, and
leveraging object oriented-programming, the GUI should allow users to plug together their own
applications from existing modules. In its popular forms on Mac OS, Windows and
KDE/Gnome/XFCE, GUIs never delivered on this promise, but reinforced the division of users and
developers. Even the fringe exceptions of Kay's own system - living on as the "Squeak" project -
and Miller Puckette's graphical multimedia programming environments "MAX" and "Pure Data" show
the limitation of GUIs to also work as graphical programming interfaces, since they both continue to
require textual programmation on the core syntax level. In programmer's terms, the GUI enforces a
separation of UI (user interface) and API (application programming interface), whereas on the
command line, the UI is the API. Alan Kay concedes that "it would not be surprising if the visual
system were less able in this area [of programmation] than the mechanism that solve noun phrases
for natural language. Although it is not fair to say that `iconic languages can't work' just because no
 one has been able to design a good one, it is likely that the above explanation is close to truth". 4

Mutant

CORE CORE bash bash CORE bash

There are %d possibilities. Do you really
wish to see them all? (y or n)

SECONDS
SECONDS

grep hurt mm grep terr mm grep these mm grep eyes grep eyes mm grep hands
mm grep terr mm > zz grep hurt mm >> zz grep nobody mm >> zz grep
important mm >> zz grep terror mm > z grep hurt mm >> zz grep these mm >>
zz grep sexy mm >> zz grep eyes mm >> zz grep terror mm > zz grep hurt mm
>> zz grep these mm >> zz grep sexy mm >> zz grep eyes mm >> zz grep sexy
mm >> zz grep hurt mm >> zz grep eyes mm grep hurt mm grep hands mm grep
terr mm > zz grep these mm >> zz grep nobody mm >> zz prof!

if ["x`tput kbs`" != "x"]; then # We can't do this with "dumb" terminal
 stty erase `tput kbs`

DYNAMIC LINKER BUG!!!Codework by Alan Sondheim, posted to the mailing list "arc.hive" on July 21, 2002

 9 / 25

file:///home/shiro/txt/projects/folly/DAH/articles/art-florian/command_line_poetics.html#tthFtNtAAC
file:///home/shiro/txt/projects/folly/DAH/articles/art-florian/command_line_poetics.html#tthFtNtAAD
file:///home/shiro/txt/projects/folly/DAH/articles/art-florian/command_line_poetics.html#tthFtNtAAE

In a terminal, commands and data become interchangeable. In "echo date", "date" is the text, or
data, to be output by the "echo" command. But if the output is sent back to the command line
processor (a.k.a. shell) - "echo date - sh" - "date" is executed as a command of it own. That means:
Command lines can be constructed that wrangle input data, text, into new commands to be
executed. Unlike in GUIs, there is recursion in user interfaces: commands can process themselves.
Photoshop, on the other hand, can photoshop its own graphical dialogues, but not actually run
those mutations afterwards. As the programmer and system administrator Thomas Scoville puts it in
his 1998 paper "The Elements Of Style: UNIX As Literature", "UNIX system utilities are a sort of
Lego construction set for word-smiths. Pipes and filters connect one utility to the next, text flows
invisibly between. Working with a shell, awk/lex derivatives, or the utility set is literally a word
dance." 6

In net.art, jodi's "OSS" comes closest to a hypothetic GUI that eats itself through photoshopping its
own dialogues. The Unix/Linux/GNU command line environment is just that: A giant word/text
processor in which every single function - searching, replacing, counting words, sorting lines - has
been outsourced into a small computer program of its own, each represented by a one word
command; words that can process words both as data [E-Mail, text documents, web pages,
configuration files, software manuals, program source code, for example] and themselves. And
more culture-shockingly for people not used to it: with SSH or Telnet, every command line is
"network transparent", i.e. can be executed locally as well as remotely. "echo date - ssh
user@somewhere.org" builds the command on the local machine, runs it on the remote host
somewhere.org, but spits the output back onto the local terminal. Not only do commands and data
mutate into each other, but commands and data on local machines intermingle with those on
remote ones. The fact that the ARPA- and later Internet had been designed for distributed computing
 becomes tangible on the microscopic level of the space between single words, in a much more
radical way than in such monolithic paradigms as "uploading" or "web applications".

With its hybridization of local and remote code and data, the command line is an electronic poet's,
codeworker's and ASCII net.artist's wet dream come true. Among the poetic "constraints" invented
by the OULIPO group, the purely syntactical ones can be easily reproduced on the command line.
"POE", a computer program designed in the early 1990s by the Austrian experimental poets Franz
Josef Czernin and Ferdinand Schmatz to aide poets in linguistic analysis and construction, ended up
being an unintended Unix text tool clone for DOS. In 1997, American underground poet ficus
strangulensis called upon for the creation of a "text synthesizer" which the Unix command line
factually is. "Netwurker" mez breeze consequently names as a major cultural influences of her
net-poetical "mezangelle" work "#unix [shelled + otherwise]", next to "#LaTeX [+ LaTeX2e]",
"#perl", "#python" and "#the concept of ARGS [still unrealised in terms of potentiality]". 7

Conversely, obfuscated C programmers, Perl poets and hackers like jaromil have mutated their
program codes into experimental net poetry.

The mutations and recursions on the command line are neither coincidental, nor security leaks, but a
feature which system administrators rely on every day. As Richard Stallman, founder of the GNU
project and initial developer of the GNU command line programs, puts it, "it is sort of paradoxical

 10 / 25

file:///home/shiro/txt/projects/folly/DAH/articles/art-florian/command_line_poetics.html#tthFtNtAAG
file:///home/shiro/txt/projects/folly/DAH/articles/art-florian/command_line_poetics.html#tthFtNtAAH

that you can successfully define something in terms of itself, that the definition is actually
meaningful. [...] The fact that [...] you can define something in terms of itself and have it be well
defined, that's a crucial part of computer programming". 8

When, as Thomas Scoville observes, instruction vocabulary and syntax like that of Unix becomes
"second nature", 9 it also becomes conversational language, and syntax turns into semantics not
via any artificial intelligence, but in purely pop cultural ways, much like the mutant typewriters in
David Cronenberg's film adaption of "Naked Lunch". These, literally: buggy, typewriters are
perhaps the most powerful icon of the writerly text. While Free Software is by no means hard-wired
to terminals - the Unix userland had been non-free software first -, it is nevertheless this writerly
quality, and break-down of user/consumer dichotomies, which makes Free/Open Source Software
and the command line intimate bedfellows.

[This text is deliberately reusing and mutating passages from my 2003 essay "Exe.cut[up]able
Statements", published in the catalogue of ars electronica 2003.]

References

[Bar75]
 Roland Barthes. S/Z. Hill and Wang, New York, 1975.

[Ben97]
 David Bennahum. Interview with Richard Stallman, founder of the free software foundation.
MEME, (2.04), 5 1997. http://www.ljudmila.org/nettime/zkp4/21.htm .

[Kay90]
 Alan Kay. User Interface: A Personal View. In Brenda Laurel, editor, The Art of
Human-Computer Interface Design, pages 191-207. Addison Wesley, Reading, Massachusetts,
1990.

[Sco98]
Thomas Scoville. The Elements of Style: Unix as Literature, 1998.
http://web.meganet.net/yeti/PCarticle.html .

 11 / 25

file:///home/shiro/txt/projects/folly/DAH/articles/art-florian/command_line_poetics.html#tthFtNtAAI
file:///home/shiro/txt/projects/folly/DAH/articles/art-florian/command_line_poetics.html#tthFtNtAAJ
file:///home/shiro/txt/projects/folly/DAH/articles/art-florian/command_line_poetics.html#CITEbarthes:sz-english
file:///home/shiro/txt/projects/folly/DAH/articles/art-florian/command_line_poetics.html#CITEbennahum:stallman
http://www.ljudmila.org/nettime/zkp4/21.htm
file:///home/shiro/txt/projects/folly/DAH/articles/art-florian/command_line_poetics.html#CITEkay:interface
file:///home/shiro/txt/projects/folly/DAH/articles/art-florian/command_line_poetics.html#CITEscoville:unix
http://web.meganet.net/yeti/PCarticle.html

Footnotes:

1 [Bar75], p. 200

2 [Bar75], p. 5

3 [Bar75], p. 4

4 [Kay90], p. 203

5 Codework by Alan Sondheim, posted to the mailing list "arc.hive" on July 21, 2002

6 Thomas Scoville, The Elements of Style: Unix As Literature, [Sco98]

7 Yet unpublished as of this writing, forthcoming on the site http://www.cont3xt.net .

8 [Ben97]

9 [Sco98], ibid.

 12 / 25

file:///home/shiro/txt/projects/folly/DAH/articles/art-florian/command_line_poetics.html#tthFrefAAB
file:///home/shiro/txt/projects/folly/DAH/articles/art-florian/command_line_poetics.html#barthes:sz-english
file:///home/shiro/txt/projects/folly/DAH/articles/art-florian/command_line_poetics.html#tthFrefAAC
file:///home/shiro/txt/projects/folly/DAH/articles/art-florian/command_line_poetics.html#barthes:sz-english
file:///home/shiro/txt/projects/folly/DAH/articles/art-florian/command_line_poetics.html#tthFrefAAD
file:///home/shiro/txt/projects/folly/DAH/articles/art-florian/command_line_poetics.html#barthes:sz-english
file:///home/shiro/txt/projects/folly/DAH/articles/art-florian/command_line_poetics.html#tthFrefAAE
file:///home/shiro/txt/projects/folly/DAH/articles/art-florian/command_line_poetics.html#kay:interface
file:///home/shiro/txt/projects/folly/DAH/articles/art-florian/command_line_poetics.html#tthFrefAAF
file:///home/shiro/txt/projects/folly/DAH/articles/art-florian/command_line_poetics.html#tthFrefAAG
file:///home/shiro/txt/projects/folly/DAH/articles/art-florian/command_line_poetics.html#scoville:unix
file:///home/shiro/txt/projects/folly/DAH/articles/art-florian/command_line_poetics.html#tthFrefAAH
http://www.cont3xt.net/
file:///home/shiro/txt/projects/folly/DAH/articles/art-florian/command_line_poetics.html#tthFrefAAI
file:///home/shiro/txt/projects/folly/DAH/articles/art-florian/command_line_poetics.html#bennahum:stallman
file:///home/shiro/txt/projects/folly/DAH/articles/art-florian/command_line_poetics.html#tthFrefAAJ
file:///home/shiro/txt/projects/folly/DAH/articles/art-florian/command_line_poetics.html#scoville:unix

" >

span-->

‹ Software art up Game art: theory, communities, resources ›

 13 / 25

/?q=softwareart
/?q=softwareart
/?q=node/11

Game art: theory, communities, resources

By marloes
Published: 09/18/2007 - 13:30

Tom Betts , September 2007

Like all digital media, video-games can be designed, produced, deconstructed and re-appropriated
within the context of art. Even though the history of video-games is relatively short, it is already rich
with examples of artistic experimentation and innovation. Unlike film or video, games still represent a
fairly immature medium, slowly evolving to locate itself in mainstream culture. The majority of games
often present simplistic or crude visions of interactivity, narrative and aesthetics, but the medium
offers unique potential for the creation of exciting new forms of art. Like any digital medium the
evolution of art/games is closely tied to the development of software, hardware and the
socio-cultural forms that grow around this technology.

In broad terms there are two general approaches by which artists interface with gaming culture and
technology. They can either modify existing games/games systems to produce work ranging from
small variations to total conversions. Or they can code their own work from scratch. Of course there
are blurred margins between these two practices, in some cases a modification becomes totally
independent, or a new code engine may borrow from an existing system.

Modification

Modifying existing game systems is usually easier than programming your own, especially now that
game modification is an encouraged part of many product life cycles. Games are frequently produced
with modification tools included and developers strive to promote a community of amateur 'add on'
designers and 'mapmakers'.

Early game modification grew out of the culture of hacking. In the 8bit era [41] many magazines
would publish 'pokes', cheat codes that directly altered the memory locations of a running game to
increase the players chances of winning (extra lives etc). It became common to add graffiti-like 'tags'
to loading screens or even alter the graphics within the game itself (as is still obvious in the 'warez'
community today [42]). Although often requiring arcane machine code knowledge a few intrepid
coders re-wrote levels from popular games and made other conversions and modifications to

 14 / 25

http://www.digitalartistshandbook.org/?q=node/23#bio_tomb
#note_41
#note_42

commercial software. While most of these interventions were little more than novelties, some
successful conversions highlighted the advantages of an open ended game engine [45] where
modification was possible if not encouraged. Soon developers and publishers realised that a stream
of modifications could greatly extend the shelf life of a product and in many cases act as free beta
testing for subsequent iterations of a series. The most prominent early expression of this was with the
Doom/Quake series of games where modifications and tools became widespread.

At this stage it became easy to identify three different types of game modification: Resource Hacking,
Code editing and Map/Texture making. Resource hacking is the method closest to original hacking , in
this case the user modifies aspects of the program without the use of any publisher-provided tools or
code. The second method involves the developers policy to release source code for the game (either
for 'add ons' or total conversions. However to make use of such code releases often requires
substantial programming skills. ID software (the developers of quake/doom) are one of the few
companies that release source code to the public. The final method focuses on using official (and
unofficial) tools to manipulate the game content and game play. The third area of practice involves
much less technical prowess than the previous two and is increasing in popularity with both
mod-makers and developers.

qqq by nullpointer

Due to the increasing range of software tools to aid modification and the support for modding by the
industry, a large number of artistic projects have followed this path. Notable works include: JODI's
minimalist modification of Wolfenstein (SOD) [1] , The psychadelic Acid Arena project [2] , Langlands
and Bell's Turner prize nominated The House of Osama bin Laden [3] , Retroyou's abstraction of the
open source X-Plane engine Nostalg [4] , nullpointer's network/performance mod of quake3 QQQ [5]

 15 / 25

#note_45
#notes_1
#notes_2
#notes_3
#notes_4
#notes_5

, the NPR quake [6] modification from quake1 source code, UK artist Alison Mealey's UnrealArt [17] ,
and many more.

Jake by Alison Mealey

Some artists approach the idea of modification in a more social context, disrupting game systems with
more interventionist approaches. These modifications are often more time based and performative.
The Velvet Strike [7] project introduced the idea of an anti-war graffiti protest into CounterStrike,
Joseph Delappe [8] has performed readings of war poetry within multiplayer death match
environments, and both RSG [9] and Lars Zumbansen [10] have investigated various 'prepared
controller' [43] type setups.

This form of performance (within the game) is closely aligned with the growing machinima
movement. In machinima productions game software is used to set, script and record in-game
movies. Although prominently used as a cheap but hip film making process (see Red vs Blue [11]),
machinima can be a powerful tool to present artistic ideas to a passive audience (see This Spartan
Life [12] - Mckenzie Wark)

 16 / 25

#notes_6
#notes_17
#notes_7
#notes_8
#notes_9
#notes_10
#notes_11
#notes_12

Games modification can also incorporate hardware hacking. Eddo Sterns Fort Paladin [13] has a PC
pressing its own keys in order to control a confused Americas Army recruit, the painstation project
and the Tekken Torture [15] events punish the player with physical injury when they lose a game,
and Cory Arcangel[16] has produced a series of re-written Super NES [40] cartridges where he has
radically altered Super Mario World [44] .

Extensive modification can sometimes take the designers/artists so far from the original game engine
that the project becomes a Total Conversion (TC). At this point people often consider the work as an
independent game-object rather than a direct modification. Artists collective C-Level used heavily
modified game engines and content to produce Waco Resurrection [18] , a fully playable game,
allowing the player to enter a hyper real re-enactment of the Texas Waco siege.

Outside modification / Developing Independently

Although modification provides a relatively easy path in terms of learning curve and software, it can
be limiting for certain projects. If artists/programmers require more power or control they can either
use existing software engines as a basis for development or they can code their own from scratch.
Due to the higher level of skills/resources needed to do this (mainstream games developers often
have multi-million budgets and 100+ staff), large projects based on original code are less frequent
than modifications. However, rather than pursuing high end technological ambitions, independent
developers tend to have more success working with simpler technology.

Working with introductory level systems like java applets or flash movies has allowed artists to
produce relatively big impact projects. Flow [19] , is an abstract game-environment written by Jenova
Chen, SodaPlay [20] is a sandbox physics game by Soda, Samarost [21] is a twisted fairytale
adventure, The Endless Forest [22] is a whimsical multiplayer space and N [23] is a minimalist
platform game by Metanet. All of these projects have received significant praise despite(and because
of) their opposition to mainstream gaming. In some cases these independent projects have broken
through to mainstream consoles (flow [19] , braid [24] , everyday shooter [25])

 17 / 25

#notes_13
#notes_15
#note_40
#note_44
#note_18
#note_19
#note_20
#note_21
#note_20
#note_23
#note_19
#note_24
#note_25

Spring Alpha by Simon Yuill

Artists with access to larger teams and resources can produce larger projects that move closer to
using the same production model as the mainstream. These works can spread over longer timescales
and involve complex iterations. The spring_alpha [26] project, directed by Simon Yuill is a project
using gaming to explore forms of social organisation. Based on the drawings of artist Chad McCail and
the unusual dystopia/utopia we see in the Sims, Spring Alpha has evolved into a number of
side-projects and FLOSS developments.

Within mainstream publishing a small minority of titles are often upheld as representing the 'art' side
of the industry. Games like Rez, Ico and Okami are frequently cited for their atmospheric
environments and abstract aesthetics, Metal Gear Solid 2 is upheld as a postmodern remix and
sandbox gaming project, promoted by the Sims, that has led to the current growth and popularity of
content/community systems such as Second Life.

Resources

Although still a niche area of practice there are a few notable resources that are well worth
investigating in order to learn more about game-art. Selectparks [27] is a collaborative blog and
archive for discussing and promoting game art activities. It has a substantial collection of articles and
news items and also hosts several artists projects. Based in Australia, the Selectparks team often
have some influence on FreePlay [28] a Melbourne based games conference/festival that
concentrates on independent and creative development of games culture. Aside from these
organisations several influential exhibitions are worth mentioning. Cracking the Maze [29] was
probably the first example of a solely game themed art show. Games [30] , an exhibition in Dortmund
was a particularly large collection of game based artwork. More recently the Gameworld [31]
exhibition at Laboral in Spain attempted to mix mainstream innovation with artistic statements and

 18 / 25

#note_26
#note_27
#note_28
#note_29
#note_31

gamer culture.

Perhaps more than any other forms of digital art, games based art has the benefit, and sometimes
barrier, of a strong existing gamer community. This is the place you are most likely to find up to date
help, criticism and examples on all aspects of game design and production. Developer/Player blogs
and forums often host heated debates and criticism, such discussion is vital for a medium that is
slowly adopting more mature forms and content. The Escapist [33] is a weekly e-zine that covers the
more thought provoking aspects of gaming culture. Play this Thing [34] is a games review blog that
focuses on fringe gaming genres or controversial titles. Gamasutra [46] is a site devoted to both
industry articles and critical commentary. Experimentalgameplay.com [32] is a site dedicated to
prototyping innovative game ideas in short time frames. From a more production based approach
sites like NeHe [36] and GameDev [37] provide links to information on programming in C or 3D,
whereas Processing [38] and GotoandPlay() [39] introduce novice programmers to working with
java and flash. As with all programming, observing and deconstructing other projects is a great way to
train your own skills, luckily most programmers are more than happy to compare notes and offer
advice via the forums attached to the above sites.

One crucial piece of advice is to start simple and have achievable goals. Producing or modifying
games can be a difficult and time consuming task. It's wise not to be overambitious in your designs
and consider the scale of existing art projects that have used similar technology. It is also important
to consider how your final work can be distributed or presented as different technologies will require
different hardware. Aside from these issues games provide a vast range of expressive forms for
creating art and are one of the cheapest ways to access cutting edge technology and distribution.

Notes

 [1] http://sod.jodi.org

 [2] http://acidarenaweb.free.fr

 [3] http://www.langlandsandbell.demon.co.uk/obl01.html

 [4] http://nostalg.org/nostalg_pw.html

 19 / 25

#note_33
#note_34
#note_46
#note_32
#note_36
#note_37
#note_38
#note_39
http://sod.jodi.org
http://acidarenaweb.free.fr
http://www.langlandsandbell.demon.co.uk/obl01.html
http://nostalg.org/nostalg_pw.html

 [5] http://www.nullpointer.co.uk/qqq

 [6] http://www.cs.wisc.edu/graphics/Gallery/NPRQuake

 [7] http://www.opensorcery.net/velvet-strike

 [8] http://www.delappe.net

 [9] http://r-s-g.org

 [10] http://www.hartware-projekte.de/programm/inhalt/games_file_e/work_e.htm#...

 [11] http://rvb.roosterteeth.com/home.php

 [12] http://www.thisspartanlife.com/episodes.php?id=4

 [13] http://www.eddostern.com

 [14] http://www.painstation.de

 20 / 25

http://www.nullpointer.co.uk/qqq
http://www.cs.wisc.edu/graphics/Gallery/NPRQuake
http://www.opensorcery.net/velvet-strike
http://www.delappe.net
http://r-s-g.org
http://www.hartware-projekte.de/programm/inhalt/games_file_e/work_e.htm#zum
http://rvb.roosterteeth.com/home.php
http://www.thisspartanlife.com/episodes.php?id=4
http://www.eddostern.com
http://www.painstation.de

 [15] http://www.c-level.cc/tekken1.html

 [16] http://www.beigerecords.com/cory/tags/artwork

 [17] http://www.unrealart.co.uk

 [18] http://waco.c-level.cc/

 [19] http://intihuatani.usc.edu/cloud/flowing

 [20] http://sodaplay.com

 [21] http://www.amanita-design.net/samorost-1

 [22] http://www.tale-of-tales.com/TheEndlessForest

 [23] http://www.harveycartel.org/metanet/downloads.html

 [24] http://braid-game.com/news

 21 / 25

http://www.c-level.cc/tekken1.html
http://www.beigerecords.com/cory/tags/artwork
http://www.unrealart.co.uk
http://waco.c-level.cc/
http://intihuatani.usc.edu/cloud/flowing
http://sodaplay.com
http://www.amanita-design.net/samorost-1
http://www.tale-of-tales.com/TheEndlessForest
http://www.harveycartel.org/metanet/downloads.html
http://braid-game.com/news

 [25] http://www.everydayshooter.com

 [26] http://www.spring-alpha.org

 [27] http://www.selectparks.net

 [28] http://www.nextwave.org.au

 [29] http://switch.sjsu.edu/CrackingtheMaze

 [30] http://www.hartware-projekte.de/programm/inhalt/games_e.htm

 [31] http://www.laboralcentrodearte.org/portal.do?TR=C&IDR=105

 [32] http://www.experimentalgameplay.com

 [33] http://www.escapistmagazine.com

 [34] http://playthisthing.com

 22 / 25

http://www.everydayshooter.com
http://www.spring-alpha.org
http://www.selectparks.net
http://www.nextwave.org.au
http://switch.sjsu.edu/CrackingtheMaze
http://www.hartware-projekte.de/programm/inhalt/games_e.htm
http://www.laboralcentrodearte.org/portal.do?TR=C&IDR=105
http://www.experimentalgameplay.com
http://www.escapistmagazine.com
http://playthisthing.com

 [35] http://www.gamasutra.com

 [36] http://nehe.gamedev.net

 [37] http://www.gamedev.net

 [38] http://www.processing.org

 [39] http://www.gotoandplay.it

 [40] Super Nintendo Entertainment System or Super NES is a 16-bit video game console that was
released by Nintendo in North America, Europe, Australasia, and Brazil between 1990 and 1993.

 [41] 8 bit era refers to the third generation of video game consoles. Although the previous generation
of consoles had also used 8-bit processors, it was in this time that home game systems were first
labeled by their "bits". This came into fashion as 16-bit systems were marketed to differentiate
between the generations of consoles.

 [42] The warez community is a community of groups releasing illegal copies of software, also referred
to as 'the Scene'

 [43] Prepared controllers are video game input devices such as game pads and joysticks that have
been modified, by for instance locking certain buttons or rewiring them.

 23 / 25

http://www.gamasutra.com
http://nehe.gamedev.net
http://www.gamedev.net
http://www.processing.org
http://www.gotoandplay.it

 [44] Super Mario World is a platform game developed and published by Nintendo.

 [45] A game engine forms the core of a computer video game. It provides all underlying
technologies, including the rendering engine for 2D or 3D graphics, a physics engine or collision
detection, sound, scripting, animation, artificial intelligence, networking, streaming, memory
management, threading, and a scene graph.

 [46] Gamasutra http://www.gamasutra.com

Images

 [1] qqq by nullpointer, image courtesy of the artist

 [2] Jake by Alison Mealey, image courtesy of the artist

 [3] Spring Alpha by Simon Yuill

" >

span-->

 24 / 25

http://www.gamasutra.com

‹ $(echo echo) echo $(echo): Command Line Poetics up Developing your own hardware ›

 25 / 25

/?q=node/13
/?q=softwareart
/?q=hardware

